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Abstract-In problems of enhancing a desired signal in the 
presence of noise, multiple sensor measurements will typically 
have components from both the signal and the noise sources. 
When the systems that couple the signal and the noise to the 
sensors are unknown, the problem becomes one of joint signal 
estimation and system identification. In this paper, we specifically 
consider the two-sensor signal enhancement problem in which 
the desired signal is modeled as a Gaussian autoregressive (AR) 
process, the noise is modeled as a white Gaussian process, and 
the coupling systems are modeled as linear time-invariant finite 
impulse response (FIR) filters. Our primary approach consists 
of modeling the observed signals as outputs of a stochastic dy- 
namic linear system, and we apply the Estimate-Maximize (EM) 
algorithm for jointly estimating the desired signal, the coupling 
systems, and the unknown signal and noise spectral parame- 
ters. The resulting algorithm can be viewed as the time-domain 
version of our previously suggested frequency-domain approach 
[4], where instead of the noncausal frequency-domain Wiener 
filter, we use the Kalman smoother. This time-domain approach 
leads naturally to a SequentWadaptive algorithm by replacing 
the Kalman smoother with the Kalman filter, and in place of 
successive iterations on each data block, the algorithm proceeds 
sequentially through the data with exponential weighting applied 
to allow adaption to nonstationary changes in the structure of the 
data. A computationally efficient implementation of the algorithm 
is developed by exploiting the structure of the Kalman filtering 
equations. An expression for the log-likelihood gradient based on 
the Kalman smootherhlter output is also developed and used to 
incorporate efficient gradient-based algorithms in the estimation 
process. 

I. INTRODUCTION 

N problems of enhancing a desired signal in the presence I of noise, multiple sensor measurements will typically have 
components from both the signal and the noise sources. Since 
the systems that couple the signal and the noise to the sensors 
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are unknown, one must deal with the more difficult problem 
of joint signal estimation and system identification. 

An approach to the two-sensor signal enhancement problem 
is presented in [4]. In that approach, the desired (speech) 
signal is modeled as an autoregressive (AR) Gaussian process, 
the noise is modeled as a white Gaussian process, and the 
coupling systems are modeled as linear time-invariant finite 
impulse response (FIR) filters. The problem is formulated 
as a maximum likelihood (ML) estimation problem, and the 
iterative estimate-maximize (EM) algorithm is applied for 
its solution. The resulting algorithm consists of iteratively 
applying the Wiener filter to the two-sensor data to estimate the 
signal and the noise and using these estimates to identify the 
coupling systems and the unknown spectral parameters of the 
signal and the noise. When applied to speech signals in room 
acoustic environment, this algorithm has shown encouraging 
results that improve upon Widrow’s LMS noise cancellation 
method [21]. 

In order to deal with the nonstationarity of the signal, the 
noise, and the coupling systems, it is suggested in [4] that 
the algorithm be applied on consecutive time frames using 
a sliding window. This approach involves two contradicting 
requirements: The window should be short enough so that the 
algorithm will respond to nonstationary changes in the signal 
and noise statistics. However, the window should be long in 
order to improve the statistical stability of the resulting signal 
and parameter estimates and in order to obtain a computation- 
ally tractable algorithm in which noncausal frequency-domain 
Wiener filtering can be applied. 

In this paper, we present a time-domain approach to the two- 
sensor signal enhancement problem based on the development 
in [20]. In this approach, we model the observed signals 
as outputs of an unknown stochastic dynamic linear system 
and apply the EM algorithm for jointly estimating the signal, 
the noise, the coupling systems, and the unknown signal 
and noise spectral parameters. The proposed algorithm is 
similar in structure to that in [4]. However, in place of the 
noncausal Wiener filter, we employ a Kalman smoother. In this 
way, many of the computational and conceptual difficulties 
associated with the prior frequency-domain approach in [4] 
are avoided. Furthermore, the time-domain formulation leads 
naturally to a sequential/adaptive algorithm by replacing the 
Kalman smoother with the Kalman filter, and in place of 
successive iterations on each data block, the algorithm pro- 
ceeds sequentially through the data with exponential weighting 
applied to allow adaptation to nonstationary changes in the 
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Fig. 1. Signal enhancement problem. 

structure of the data. A computationally efficient implementa- 
tion of the algorithm is developed by exploiting the structure 
of the Kalman filtering equations. An expression for the log- 
likelihood gradient based on the Kalman smoother/filter output 
is also developed and used to efficiently incorporate gradient- 
based algorithms in the estimation process. 

We note that the approach in this paper is not restricted 
to the two-sensor signal enhancement problem. As shown in 
[20] and [13], respectively, this approach can also be applied 
to single-sensor signal-enhancement and noise-cancellation 
problems. More generally, it can be applied to multisensor 
signal enhancement problems in which the number of sensors 
is not necessarily equal to the number of signal sources. 

11. PROBLEM FORMULATION 

The basic problem of interest is illustrated in Fig. 1. We 
assume that a desired signal source and a noise source exist in 
some environment. We want to install two sensors in such a 
way that one of them (the primary sensor) measures the desired 
signal while the other one (the reference sensor) measures the 
noise. However, the signal and the noise are both coupled 
into each sensor through the environment. To simplify the 
exposition, we shall assume that the coupling systems A and 
B are causal linear time-invariant FIR filters, in which case 
the signals z l ( t )  and 22(t) measured at the two sensor outputs 
are modeled as 

P 

zl(t) = s ( t )  + m w ( t  - IC) + el(t) (1) 

z2(t) = w(t) + bks( t  - IC) + e2(t) (2) 

k=O 
r 

k=O 

where s ( t )  is the desired signal, w( t )  is the noise, { ~ k } ~ , ~  

and {bk}&o are the unit sample response coefficients of A 
and B, respectively, and the additional noise sources el(t) and 
e2(t) are included to represent modeling errors, sensor noise, 
and measurement noise. The independent variable t represents 
normalized sampling time. 

We shall assume that el@) and e2(t) are statistically inde- 
pendent zero-mean white Gaussian processes with variances 
g1 and 92,  respectively. The desired signal s ( t )  is modeled as 
an AR process of order p ,  satisfying the difference equation 

V 

k = l  

and the noise w(t) is modeled by 

where us(t)  and uw(t) are normalized (zero-mean, unit 
variance) white Gaussian processes. We assume that 
us (t) , U, (t) , el (t) , and e2 (t) are mutually independent. 

We shall find it convenient to define: 

T = [ Q p ,  ap-1, *-.a11 , 
T a = [a,, . . a,] 

and 

T b = [b,, b r - l , .  . .bo]  . 

Then, (1) and (2) can be written in the form 

zl(t) = s ( t )  rt aTwq(t) + el(t) 

Z2(t)  = w(t) + bTs,(t) + e2(t) 

s ( t )  = - a T s p - l ( t  - 1) + &U&). 

and (3) can be written in the form 

Denote by 8 the vector of unknown parameters: 

T T T  T 8 = [a a b S ~ S ~ S I S ~ I  . 
We note that some of the components of 8, e.g., some of the 
signal variances, may be known a priori, depending on the 
application. 

Given the observed data 

z = (Zl(t), Z*( t )  : t = 1,2, . . . , N }  (14) 

we want to find the best possible estimate of the desired 
signal s(t) .  If one interprets “best” in the usual sense of 
minimizing the mean square error (mse), the optimal signal 
estimate is obtained by performing the conditional expectation 
of s ( t )  given the observed data z. However, this conditional 
expectation requires prior knowledge of 8. Since 8 is unknown, 
we must deal with the more complicated problem of joint 
signal estimation and parameter identification. 

One approach would be to compute the ML estimate of 8 
and use’it to generate the signal estimate. The ML estimate 
8ML of 8 is obtained by solving 

BML = arg max log f~ (z ;  8) e (15) 

where log fi(z;8) is the log-likelihood, that is, the log- 
arithm of the probability density of the observed data z. 
Unfortunately, the maximization in (15) is’ a complicated 
multidimensional optimization that is very difficult to solve. 

In the next section, we develop a computationally efficient 
iterative method based on ,the EM algorithm for solving the 
joint signal and parameter estimation problem indicated above. 
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111. SIGNAL E N H A “ T  BASED ON THE EM ALwR~THM 

The EM algorithm [3] is basically an iterative method for 

of “complete” data and iterates between estimating the log 
likelihood of the complete data using the observed (incom- 
plete) data and the current parameter estimate (E-step) and 

Let the “complete” data y be specified by 

finding ML parameter estimates. It works with the notion 
Y =  [.I. 

Invoking BaYes’ rule 
maximizing the estimated log-likelihood function to obtain the 
new parameter estimate (M-step). fy(y; 0) = fS,W(% w; e> . fz,s,w(zls, w;  e> 

More specifically, let y denote the “complete” data related = fds;  e) . fwb; 0) . fz,s,w(zls, w; e) (21) 
to the observed data z by some noninvertible (many-to-one) 
transformation. Let e(*) denote the current estimate of 0 after 
1 iterations of the algorithm. Then, the next iteration cycle is 
specified in two steps as follows: 

E-step: Compute 

Q(e, e(’)) = Eg(l){log f y b  e)lz}. (16) 

M-step: 

max Q(B, e(’)) --f (17) e 
where log fy(y; 0) is the log-likelihood of y, and Ea(‘) {.I.} 
denotes the conditional expectation given 2 = z computed 
with respect to the current parameter estimate e(‘). 

The heuristic idea is that we want to choose 8 to maximize 
the log likelihood of the complete data y. However, since log 
fy(y;8) is not available to us (because the complete data is 
unavailable), we maximize instead its expectation given the 
observed data z and the current parameter estimate e(’). Since 
we have used e(’) rather than the actual (true) value of 0, 
the conditional expectation is not exact. Thus, the algorithm 
iterates, using the current parameter estimate to improve the 
conditional expectation on the next iteration cycle (E-step) 
and, thus, to improve the next parameter estimate (M-step). 
If Q(e,e’) is continuous in both 8 and e’, the algorithm 
converges monotonically to a stationary point of log f z ( z ;  e), 
that is, the observed log-likelihood function (see [22]), where 
each iteration increases the likelihood value. Of course, as in 
all “hill climbing” algorithms, the stationary point may not be 
the global maximum, and thus, several starting points or an 
initial grid search may be needed. 

In order to apply the EM algorithm, we must specify the 
“complete” data y. Following the considerations in [4], let s 
denote the (N + r)-dimensional vector of signal samples 

s = { s ( t )  : --T + 1 5 t 5 N }  . (18) 

and let w denote the (N + q )  -dimensional vector of noise 
samples 

W =  { ~ ( t )  : - q +  1 5  t 5 N } .  (19) 

We assume @at the orders r and q of the transfer functions 
are greater than the order p of the desired signal. This would 
typically be the case if, for example, the signal is speech and 
the transfer functions represent room acoustics. Under this 
assumption, the vectors s and w contain all the signal and 
the noise samples that affect the observed data z. 

where fs(s; e) is the p.d.f. of s, fw(w; e) is the p.d.f. of w,  
and fz s,w(zIs, w;  e) is the Conditional p.d.f. of z given s 
and w. f, the transition from the first line of (21) to its second 
line, we invoked the statistical independence between s and w. 

Taking the logarithm on both sides of (21) 

1% fy(y; e> = 1% fsh e> 
+ 1% fw(w; 0 )  + 1% fz,s,w(zIs,w; e). (22) 

BY (12) 

1% f&; 0) = 1% f (Sp- l (O))  

N - log 2rg, 

1 - - .[s(t) + aTsp- l ( t  - 1)12 ‘(23) 
29.5 t=l 

N l N  
- y l0g2rgw - - 29, C w 2 ( t )  t=l (24) 

N l N  

2g2 t=l  
- - log2rg2 - - C [ Z 2 ( t )  - w(t) - bTsv(t) ]2.  

(25) 

2 

Substituting (23)-(25) into (22) and assuming that N >> p ,  q 
so that the contributions of log f(sp-l(0)) and log f (wq(0) )  
are negligible 

N l N  

2g2 t=l  
- - l0gg2 - - C [ z z ( t )  - ~ ( t )  - bT+(t)]2 (26) 

2 
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where C is a constant independent of 8. Taking the conditional M-step: Compute 
expectation given z at a parameter value a('), we obtain 

where 

N 
2 

Q2(8, e(')) = -- logg, 

1 -('I 
- - C w 2  (t) 

2gw t=l 

N 
2 

Q3(8, d')) = - - log gl 

t=l I 
(36) 

(37) 

t=l 

z(t) = [s:(t)iW,T(t)]T 

= [s( t  - r)s(t - T + 1). . . s(t)i 
W(t - q)W(t - p + 1) * .  . ~ ( t ) ] ~ .  (32) 

Since Q1(8,8(')) depends only on a and gs,Q2(8,8(')) 
depends only on gw, Qa(8, e(')) depends only on a and 91, 
and Q4(8, e(')) depends only on b and 92,  the maximization of 
Q(8,8('))  (M-step) decouples into the maximizations of each 
one of the terms in (27) with respect. to the corresponding 
parameters. Furthermore, these maximizations can be solved 
analytically. The resulting algorithm is: 

E-step: For t = 1,2 , .  . . , N compute 

k( ' ) ( t )  = Eo(') {z ( t ) l z )  (33) 

z ( t ~ ( t ) ( ' )  = Eo(') {z(t>zT(t>lz). (34) 

This algorithm has a nice intuitive form. In the E-step, 
we use the current parameter estimate e(') to estimate the 
sufficient statistics of the desired signal and the noise. The 
M-step of the algorithm decouples as follows: Equation (35) 
is the Yule-Walker solution for the AR parameters where the 
sufficient statistics of the signal are replaced by their current 
estimates. Equations (38) and (40) are, respectively, the least 
squares solutions for a and b based on the estimated sufficient 
statistics. The gain parameters in (36), (37), (39), and (41) 
are the sample averages of the corresponding power levels. 
We note that if some of the gain parameters are known a 
priori and need not be estimated, we simply eliminate the 
corresponding equations. 

Since the algorithm is based on the EM method, it converges 
montonically to the ML estimate of 8 or, at least, to a 
stationary point of the log-likelihood function. As a by product, 
it also provides the desired signal estimate $')(t) ,  which is 
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the ( r  + 1)st component of #)(t).For the purpose of signal 
enhancement, it is the signal estimate that we are primarily 
interested in. ' 

The computation of the conditional expectations in (33) and 
(34) can be carried out using the Kalman smoothing equations. 
To do that, let us represent (10H12) in a state-space form: 

~ ( t )  = @ ~ ( t  - 1) + Gu(t) 
~ ( t )  = H z ( t )  + e( t )  

(42) 
(43) 

where z( t ) ,  which is the state vector, is defined in (32), and 

as = 

and 

aw = 

... ... 0 0 1 0 ... . .  . . . .  . . .  

. .  
*.. 0 

0 1  

0 -ap -ffp-l * . .  --a1 ... 

01 0 1  0 . . . . . . . . .  

.. 0 ... ... 
0 
... 

We also define by R the 2 x 2 covariance matrix of e(t): 

Now, let the conditional expectations required in (33) and 

(53) ( 1 )  

(54) 

(34) (E-step) be represented as 

d') ( t )  = pt 

where we define 

P$ = Ee(l) {z(t)lz(l), ~ ( 2 1 ,  . . ., z(n)) (55 )  

P$ = Ee(l) {[z(t> - p$;l[z(t) - 49' 
. lz(l), z(2>,. . . ,  441. (56) 

Denote by e('), G('), Id'), and R(') the matrices 9, G, H ,  
and R computed at the current parameter estimate 8 = e(". 
Then, using the Kalman smoothing equations, and Ptln 
may be computed, in three stages, as follows. 

Propagation Equations: For t = 1,2, . . . , N compute 

(57) ( 1 )  = 1 
Ptp-1 @( )Pt-llt-l 

Ptp-1 @( )Pt-llt-l (58) ('1 = 1 ('1 @([IT + 

with initial conditions p$ and P$. 
Updating Equations: For t = 1,2,  . . , N compute 

( 1 )  ( 1 )  ( 1 )  
PLfl = P : ; L  + Kt [4t> - H cctlt-ll 

P$ = [I - Kf)I€(1)]P& 

(59) 

(60) 

where I is the identity matrix, and K,(') is the Kalman gain: 

K:') = tlt-1 I€(l)TIH(l)p(l) tlt-1 H(1lT + R(1)I-l. (61) 

Smoothing Equations: For t = N, N - 1, . . . , I  compute 
( I )  (0  ( 1 )  ( I )  ( I )  ( 1 )  

Pt-lIiv = CLt-qt-1+ S,-l[C'tIN - @ C't-11t-11 

p(1) - ( 1 )  ( 1 )  

(62) 

t-1IN -Pt-lJt-l + sL!l[p:A - Ptlt-l]St-l (63) 

where 

st-1 ('1 n - Pt-1p-1 ( 1 )  @(l )TP(V tlt-1. (64) 

To initialize the Kalman smoothing equations, we must 
specify polo and P$. In the case of weak coupling we may 
use the actual sensor data, i.e., the first (r + 1) samples 
of zl(t) and the first (q + 1) samples of z z ( t )  to specify 
p$, and the initial covariance P,$ can be assessed by 
computing sample covariances. These initial estimates can then 
be iteratively improved by using the final estimates from the 
previous iteration cycle, i.e., p$, = p?? and P$') = P(') OIN' 

Comments: The EM algorithm for joint state and parameter 
estimation in linear dynamic state-space models has previously 
been developed in [ 121 and [ 17 1. The proposed algorithm can 
therefore be viewed as an extension of these methods to the 
two-channel signal enhancement problem. 

The EM algorithm is only guaranteed to converge to a 
local maximum of the likelihood function. Therefore, in order 
to ensure convergence to the global maximum, a good ini- 
tialization procedure may be required. Under the assumption 
of weak coupling of the desired signal s ( t )  to the second 

( 1 )  
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(reference) sensor, we may initialize b to be a zero vector 
and apply the LMS method [21] to obtain an initial esimate 
of U. In case of strong coupling of the desired signal to the 
reference sensor, use of the method in [19] is suggested to 
extract initial estimates for both U and b. These are the most 
crucial parameters for the purpose of estimating, or enhancing, 
the desired signal. 

The rate of convergence of the EM algorithm is determined 
by the portion of the covariance of the complete data that can 
be predicted using the incomplete (observed) data (see [3] .and 
[ 111). In our problem it is determined by the power levels g1 
and g2 of the additive noises. Therefore, in order to obtain fast 
convergence, overestimating g1 and g2 is recommended at the 
initial stage of the algorithm. 

All other parameters a, gB, and gw may be initialized by 
a least-squares fit of the signal and the noise to the actual 
sensor data in case of weak coupling, or they may be arbitrarily 
initialized. Simulation results indicate that the initialization of 
the signal and noise spectral parameters has little effect on the 
convergence behaviour of the algorithm. 

The computational complexity of the proposed EM algo- 
rithm is determined by the orders (q  + 1) and ( r  + 1) of 
the coupling systems that are the dimensions of the vectors a 
and b, respectively. For example, in the problem of enhancing 
speech, the coupling systems that represent the acoustic trans- 
€er functions in a room environment are typically modeled as 
FIR filters of at least several hundred coefficients. Thus, in the 
M-step of the algorithm, (38) and (40) are computationally the 
most demanding since they require the inversion of (q  + 1) x 
( q + l )  and ( r + l )  x ( r+l )  matrices, respectively. In the E-step 
of the algorithm, we need to implement the Kalman smoothing 
equations for estimating a ( q  +r + 2) -dimensional state vector. 
The smoothing equations (62) and (63) are computationally the 
most expensive since they require the inversion of matrices of 
dimension (q  + T + 2) x (q  + r + 2). We may exploit the 
structure of the matrices 8, G, H ,  and R in order to simplify 
the computations involved (see considerations in the sequel). 

We also note that there are a variety of methods, e.g., 
the square-root algorithm, that can be used to implement the 
Kalman equations more efficiently (e.g., see [l]). 

IV. SEQUENTIAL/ADAFITVE ALGORITHMS 
The algorithm in the previous section was developed under 

the assumption that the signal and the noise are stationary 
processes and that the coupling systems are time invariant. 
However, in many practical situations, the desired signal (e.g., 
speech) is more typically a nonstationary process with time- 
varying spectral parameters, and the parameters ak and bk 

characterizing the coupling filters may also be time varying, 
perhaps because of changes in the propagatio? conditions in 
the medium or because of changes in the source-receiver 
geometry during the observation interval. Basically, we have a 
situation in which the state vector z(t) that contains the signal 
and the noise samples depends on a time-varying parameter 
vector B ( t ) ,  and we want an adaptive algorithm that is capable 
of tracking the varying parameters. 

One approach is to assume that the observed signals are 
stationary over a fixed time window, and apply the algorithm 
on consecutive data blocks. An alternative, and certainly 
more attactive, approach is suggested by the structure of the 
algorithm. As it stands, the algorithm iterates between state 
estimation using the Kalman smoother and parameter identifi- 
cation. To obtain a sequentiaVadaptive algorithm, we replace 
the Kalman smoother by the K h a n  filter, requiring only the 
propagation equations followed by the updating equations. In 
that way, the state at a particular time instant t is estimated 
using only the past and current data samples, and there is no 
need for the smoothing equations that are computationally the 
most expensive. Then, we suggest incorporating exponential 
weighting into the parameter estimation update in order to 
reduce the effect of past data samples relative to new data. 
The exponential weighting is effectively equivalent to a sliding 
window operation. Finally, since we are interested in an on- 
line adaptive algorithm, we suggest restricting the number of 
iteration cycles. In particular, if we perform only one iteration 
per data sample (i.e., replacing the iteration index by the time 
index), then we obtain a fully sequential algorithm in which 
the state (signal) estimate is generated using a forward Kalman 
filter whose parameters are continuously updated. 

Specifically, denote the estimates of z(t) and z(t)T(t) based 
on the observed data to time t and the current parameter 
estimate e( t) by 

In addition, denote by &, Gt, Ht, and Rt the matrices 
I , G , H ,  and R computed at B = B ( t ) .  Then, ptlt and Ptlt 
are computed recursively in t as follows. 

Propagation Equations: 

with initial conditions polo and Pop.  
Updating Equations: 

where 

In Appendix A, we have exploited the structure of the 
matrices, I , G , H ,  and R in order to efficiently compute 
the Kalman filtering equations. Instead of having to multiply 
(q  + T + 2) x (q  + T + 2) matrices as suggested in (68), 
the computationally most expensive term in the efficient 
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implementation is a quadratic form uTVu, where U is a 
vector of dimension q or T. For the specific application of 
speech enhancement in a noisy acoustic environment subject to 
reverberant or multipath effects, the dimensions T and q of the 
FIR filters characterizing the acoustic transfer functions tend 
to be very large (on the order of several hundred coefficients), 
in which case, the development in Appendix A results in a 
very significant savings in ,computations. 

The parameter estimate e(t) is obtained from (35)-(41) by 
replacing the iteration index 1 by the time index t ,  using data 
only up to the current time t and incorporating exponential 
weighting. Thus 

r=1 

r=l 

(74) 

where ys, -yw, 7 b ,  71, and 7 2  are the exponential weights 
that are preselected real-valued numbers between 0 and 1, 
specifying the effective window in estimating the various 
parameters. Recursive formulae for computing these equations 
are developed in Appendix B. Altogether, we obtain a fully 
sequential algorithm that is capable of tracking nonstationary 
changes in the structure of the data. 

Of course, this is no longer an EM algorithm, and there 
is no proof that it converges. However, since the algorithm 
essentially consists of a Kalman filter whose parameters are 
continuously updated, then under certain stationary/ergodic 
conditions it may be possible to claim convergence. This 
important issue must be explored in depth. 

We note that this is not the only way to generate sequen- 
tidadaptive algorithms. One may use the state-space model 
in (42) and (43) as a starting point and apply the prediction 
error methods in [2] and [9] directly to obtain sequential and 
adaptive algorithms. It might also be interesting to apply these 
methods to the two-channel signal enhancement problem and 
to compare the resulting algorithms to the algorithm presented 
here. 

V. GRADENT-BASED ALGORITHMS 

As an altemative to the EM algorithm, consider the class 
of gradient-based algorithms for finding the ML parameter 
estimate: 

1 
Gl(t + 1) = 7 where, as before, I?(') denotes the estimate of 0 after 1 iteration 

cycles. If A(z;B) is a constant diagonal matrix independent 
of z and 8, we obtain the conventional steepest-descent 
algorithm, where the diagonal elements of A are the step- 
sizes used for updating the estimates of the various parameters 
along the iterations. For sufficiently small step-sizes, the 
steepest-descent algorithm converges linearly to the desired 
ML solution or, at least, to a local maximum of the likelihood 
function. As shown in [18], the EM algorithm also possesses 
a linear convergence rate near the point of convergence. If 
A(. : e) = -H- l ( z ;  e), where H(z ;  e) is the Hessian matrix 
defined by 

r=1 
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we obtain the scoring algorithm (e.g., see [14]). The New- 
ton-Raphson and the scoring algorithms possess a super-linear 
(quadratic) convergence rate; however, their convergence may 
depend more critically on initialization. 

The computation of the log-likelihood gradient (score) 
dlog f z ( z ;  @)/a@ by direct differentiation of the log- 
likelihood function log fz(z; e) is very complicated. It leads 
to the so-called sensitivity derivatives, which are effectively 
the derivatives of the Kalman filtering equations (i.e., the 
propagation and updating equations) with respect to the 
unknown parameters (e.g., see [2], [6]). The prediction- 
error methods in [2], [9] also require the computation of 
the sensitivity derivatives. 

An alternative approach for computing the score in linear 
dynamic state models in proposed in [15]. It is based on 
Fisher's identity [5] 

where, as before, z is the observed (incomplete) data and g is 
the complete data. Fisher's identity asserts that the observed 
(incomplete) data score is equal to the conditional expectation 
of the complete data 

'Substituting (26) into (81) and carrying out the indicated 
differentiation and expectation operations, the components of 
the score vector are given by 

- 2Z2(t)G(t) + 2 ( t )  - 2bTi,(t)z2(t) 

+ 2bTs,(G(t)  + bTs.(tZ(t)b] 

(88) 
where ( a )  = Ee{.lz}. 

We observe that (82X88) depend on the data z only 
through the conditional expectations k( t )  = Ee{z(t)  Iz} and 
z(tji?(t) = Ee{z( t>zT( t ) l z ) .  

Thus, if we choose to apply the steepest-descent algorithm, 
then substituting (82H88) into (79), we obtain the following 
a l g o r i t b  

-A 

Signal Estimation: For t = 1,2, . . . , N compute 

f("(t) =Eo(') { z ( t ) l z }  (89) 

(90) 
(2) 

Parameter Estimation: 
z ( t j 3 ( t )  = Eg(l) { z ( t>zT( t>lZ} .  
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where Sa, S,, S,, sa, St,, 61, and 62 are the step-sizes used in 
the algorithm. 

The most striking feature of this algorithm is that it has 
the same form as the EM algorithm specified by (33)-(41). It 
consists of a signal estimation step followed by a parameter 
estimation step. Furthermore, the signal estimation step is 
identical in both algorithms, and can be implemented using 
the Kalman smoothing equations. The only difference is in the 
parameter estimation update. Since (91)-(97) do not require 
any matrix inversions, they may be simpler to compute, 
particularly for the problem of speech enhancement in noisy 
acoustic environments, when the dimensions of the coupling 
filters representing the acoustic transfer functions tend to be 
very large, and the matrix inversions required in (38) and (40) 
of the M-step of the EM algorithm are computationally very 
expensive. 

It is important to note that unlike the EM algorithm whose 
convergence rate depends on the complete data specification, 
the steepest descent is a gradient-based algorithm whose 
convergence path depends solely on the step-sizes being used. 
Here, we have used the notion or complete data only as a 
mechanism to compute the log-likelihood gradient. 

We may choose to first apply the EM algorithm in order 
to guarantee monotonic convergence and then switch to the 
gradient algorithm for parameter updating, with the benefit of 
reduced computational requirement. We may also incorporate 
the Newton-Raphson or the scoring algorithm in order to 
accelerate the algorithm near the point of convergence. For 
that purpose, we need to compute the Hessian or the FIM (see 
considerations in [ 161). 

As with the EM algorithm, to convert the gradient algorithm 
into a sequentiaVadaptive algorithm, we suggest replacing 
the Kalman smoother used for state (signal) estimation by 
the Kalman filterin5 equations (67)-(71). Then, to obtain the 
parameter estimate q t ) ,  we suggest replacing the cumulative 
averages 1/N E(-) appearing in (91)-(97) by the most current 
term in the sum, and replacing the iteration index I by the time 
index t. With these modifications, we obtain the following 
recursive formulae for updating the components of e(t): 

s -  
gs(t + 1) = 1 - - &(t) + + . [s2(tlt) 5 

gw(t + 1) = ( 1 - - ?) jw(t)  + 6"3(tl t)  2' 

n . [z?(t) - 22l(t)d(t) + s&t) 

- 2iT (t)W,(tlt)z1 (t) + 2iT(  t)w*(t)t)s(tlt) - + iT (t)w,(t(t)w;(t It)i(t>] 

G 2 ( t  + 1) = (1 - $)P2( t )  

+ +2(t) 62 2 - 222(t)C(t) + 3 ( t )  
L n 

- 2iT ( t ) i ,  (t 1 t)z2 (t) -4- 2iT (t)sr (t 1 t )w (t It) 

+ i T ( t ) s e & ( t ) ] .  (104) 

Once again, the signal estimation is identical for both the 
sequentiabEM and the sequential gradient algorithms. The 
difference is only in the parameter estimation update. If 
we are primarily interested in an on-line adaptive algorithm 
then from a computational viewpoint, the sequential-gradient 
algorithm may be preferable since it does not require any 
matrix inversions. We note that the efficient implementation 
of the Kalman filtering equations presented in Appendix A 
can be exploited to further simplify the form of (98)-(104). 

VI. EXPERIMENTAL RESULTS 

To verify the proposed approach, we have implemented and 
tested the algorithms in the following context: The desired 
signal s ( t )  is speech, corresponding to the sentence: "He 
has the bluest eyes." The signals w ( t ) , e l ( t ) ,  and ez( t )  are 
computer generated white Gaussian noises. The coupling sys- 
tems A and B are derived from the simulated room acoustics 
impulse responses used in [4]. For computational simplicity 
the impulse responses are assumed to be finite length with 
order 128, i.e., T = q = 127. The spectral level of w(t )  
is set such that the SNR, that is, the average power of the 
desired signal divided by the average power of the residual 
signal, at the first (primary) sensor is 0 dB, and the S N R  
at the second (reference) sensor is -26 dB. The levels of the 
independent noise sources e l ( t )  and ez( t )  are 34 dB below the 
level of w(t ) .  The measured signals z l ( t )  and zZ(t) ,  which are 
generated using (1) and (2), respectively, are shown in Fig. 2 
(only 1OOO-point data segments are shown). 

In general, speech is well-modeled by a tenth-order AR 
process. However, preliminary experimentation with various 
orders indicated that it is sufficient and sometimes preferable 
to use a lower order model. Specifically, in this experiment 
we used a second-order AR model for the speech signal. 

In applying the algorithms, only the vector unit sample 
response coefficients a of the coupling system A, and the 
desired signal parameters a and g, are estimated. The other 
coupling system B and the spectral levels of w( t ) ,  el (t), and 
ez( t )  are assumed to be known. 

We first implemented the sequential-EM algorithm that con- 
sists of state estimation using the Kalman filtering equations 
(67)-(7 1) and parameter estimation using equations (72), (73), 
and (75). The inverse of the 128 x 128 matrix in (75) was 
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Fig. 2. (a) Signal measured at the first (primary) sensor; (b) signal measured 
at the second (reference) sensor. 

updated every 100 data samples to save computations. The 
exponential weights ya, ys, and ya used were all equal to 
0.995, corresponding to a sliding window of effective length 
138 (0.995138 = 0.5). In this setting, we have an adaptive 
algorithm that is capable of tracking the varying characteristics 
of both the signal (since ̂ la, ys < 1) and the unknown coupling 
system (since ^la < 1). 

We applied the LMS method [18] (under the assumption 
that B is zero) using the first 300 data samples of the given 
signals z l ( t )  and zg( t )  to obtain an initial estimate of a and 
of the speech signal s ( t ) .  An initial estimate of a is then 
obtained by a least squares fit of the initial signal estimate to 
a second-order AR model. The signal level was arbitrarily set 
to the initial value of gs = 100. The state vector was initialized 
using the first ( r  + 1) samples of z l ( t )  and the first (q  + 1) 
samples of zg(t) ,  and the state covariance was initially set to 
be a diagonal matrix whose first (r + 1) diagonal elements 
are all equal to the initial value of gs, and the other (p + 1) 
diagonal elements are all equal to the noise level gw. 

The results of this experiment are illustrated in Figs. 3-6. 
The actual and estimated speech signals are shown in Fig. 3. 

0.5 

0 

-0.5 

1 
Fig. 3. Estimated signal using the sequential EM algorithm. 

I ~ Actual unit sample Rcspolrpe 
..... Estimated Unit S q l e  Response 

I I ,  I 

Time (samples) 
20 40 60 80 100 120 140 

Fig. 4. Estimated unit sample response of the coupling system using the 
sequential EM algorithm. 

The post-processing SNR, that is, the average power of the 
actual signal s ( t )  divided by the average power of the error 
signal [S(t)-s(t)] ,  was 23 dB, indicating a 23-dB enhancement 
relative to the original sensor data. In Fig. 4 we have shown 
the actual and estimated unit sample response coefficients of 
A, and in Fig. 5, we have shown the frequency response of 
the actual and estimated filter. The algorithm converged to 
an accurate estimate of the filter coefficients in roughly loo0 
data samples, corresponding to 0.1 s for the 1O-kHz sampling 
frequency used to generate the data. In Fig. 6(a), we have 
shown the estimate of the signal level gS as a function of time. 
For reference, in Fig. 6(b), we have shown the original speech 
signal. We see that the estimate of the signal level tracks the 
signal envelope very closely. 

Next, we implemented the sequential-gradient algorithm that 
consists of performing the parameter estimation update using 
(98), (99), and (101). The step sizes &,&, and 6, used were 
all equal to 0.995. The state vector and its covariance were 
initialized as before. However, the coupling system A was 
initially set to zero (i.e., a = 0), and the initial estimate 
of Q was obtained by a least squares fit of a second-order 
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Fig. 6. (a) Estimated signal level; (b) actual speech level. 

AR model to z l ( t )  using the first 300 data samples. As 
before, the signal level was arbitrarily initialized to gs = 100. 
The actual and estimated speech signals are shown in Fig. 

x1W 
15, I 

Fig. 7. Estimated speech signal using the sequential gradient algorithm. 

7. The post-processing SNR in this case was 8 dB, which 
is considerably lower than the 2 3 4 3  enhancement achieved 
with the sequential-EM algorithm. However, a more careful 
calculation of the post-processing SNR over a sliding window 
of 100 time samples shows an enhancement of over 10 dB and 
sometimes 20 dB during the more stationary voiced segments 
of the speech. The algorithm did the worst during the silence 
periods and in the transitions into and out of the silence 
periods. In qualitative listening, the estimated speech exhibited 
noticeable improvement when compared with the actual sensor 
data. The background noise was more evident between words, 
but the actual words were clearly intelligible. However, the 
perceptual quality of the signal estimate is not as good as that 
obtained with the sequential-EM algorithm. 

The main advantage of the sequential-gradient algorithm 
is in its computational simplicity. It does not involve any 
matrix inversion, and consequently, it requires only about 2% 
of the floating-point operations needed for the sequential-EM 
algorithm. It also seems to work better with arbitrary initial- 
ization. When the initial A was set to zero, the sequential- 
EM exhibited convergence problems, whereas the sequential- 
gradient algorithm converged very quickly within 2000 data 
samples. 

Finally, we note that the iterative-batch EM algorithm is 
expected to perform similarly to the frequency-domain EM 
algorithm in [4], which resulted in an improvement of 28 dB 
for this data. Therefore, in this particular experiment, 5 dB of 
enhancement was sacrificed in making the algorithm sequential 
and adaptive. 

APPENDIX A 
DEVELOPMENT OF THE EFFICIENT FORM 
OF THE KALMAN FILTERING EQUATIONS 

Let pt-llt-l be partitioned as follows: 
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Let p p  be the lower p x 1 sub-vector of (or the lower and 
p x 1 sub-vector of ps): 

[,llP* 

Let Pt-llt.-l be partitioned as follows: Substituting (A. 10) and (A. 11) into (A.9), we obtain 

(A.12) 

11 
Substituting (49), (A.3), and (47) into (68) 

(A.3) 
11 

I Q  

Let rp be the following submatrix of P22: 

p22 = [ IT,] 1 r (A.4) 
c) 

P 

and let rpp be the following submatrix of I?,: 
r i  

where 

. r3 -4 -a 

= [VI, -aTr,T aTrppa (A.14) c) 

P 

(so that rpp is the lower right p x p submatrix of P22). 
@sPsw@H = [+I I -aT r*] 

p24= -& j P -  (A.6) *[XI [ I  
@WPWW@,T = [*I [XI 

. [%I [%I* 1 

b =  [$]::. (A.@ 

Let Ap be the following submatrix of P24: 

4--+ 

= [-I, (A.15) 
-aTAp 

Let a and b be partitioned as follows: 

(A.7) a =  s1q 

For convenience, we shall AuseA 8 insteFd of b( t ) ,  and 

Substituting (49) and (A.l) into (67) 
= [-*I1 (A.16) 

8, G, H, and R instead of et, Gt, H,, and Rt, respectively. 

and GGT is the matrix having only two nonzero elements 

PLtlt-1 = r*] [z] = [%I 
where G @ = [  9 s  gw] 

@,p, = rw] [E] = ["-I (A.lO) 

(A.9) 

t r + l  . (A.17) 
+ r + q + 2  

t t  
I -aT -aTPp r + l  r + q + 2  
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-p22 

- 

Substituting (A. 14HA.17) into (A.13), we obtain 

-rPa p24 0 

0 

gw O 1  

aTrPpa + gS -aT& 

p44 

r 1 9 1 (A.18) 

where we note that Ptlt-l is a symmetric matrix; therefore, 
the lower blocks in (A. 18) can be completed accordingly. 

Substituting (A. 1) and (A. 18) into ( 6 9 x 7  l), and following 
straightforward matrix manipulations, we obtain 

(A. 19) 
(A.20) 

where we have defined Dt in (A.21), which appears at the 
bottom of this page, and Ft is the 2 x 2 symmetric matrix: 

(A.22) 

where 

Equations (A. 12) and (A.18) constitute the propagation 
equations, and (A.19) and (A.20) constitute the updating 
equations. 

APPENDIX B 
RECURSIVE IMPLEMENTATION OF (72H78) 

(A.21) 
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Then, using (B.l)-(B.lO) in (72)-(78), we obtain the follow- likelihood gradient (score) of linear dynamic systems,” IEEE Trans. 
Automat. Conn., vol. 33, no. 8, pp. 763-766, Aug. 1988. ing recursive for updating the Parameter estimates: ,161 M. Segal and E. Weinstein, “A new method for evaluating the score, 
Hessian. and the Fisher’s information matrix of discrete-time dynamic 
systems,” IEEE Trans. Inform. Theory, vol. 35, no. 3, pp. 682487, 
May 1989. 

[17] R. H. Shumway and D. S. Stoffer, “An approach to time series 
smoothing and forecasting using the EM algorithm,’’ J. Time Series 
Anal., vol. 3, no. 4, pp. 253-264, 1982. 

[I81 D. M. ‘lltterington, “Recursive parameter estimation using incomplete 
data,” J .  Royal Stat. Soc., vol. 46, no. 2, pp. 257-267, 1984. 

[19] E. Weinstein, M. Feder, and A. V. Oppenheim, “Multichannel signal 
separation based on decorrelation,” IEEE Trans Audio Speech, Oct. 
1993, pp. 504-519 (also RLE Techn. Rep. No. 573, M.I.T., Cambridge, 
MA., Mar. 1992). 

[20] E. Weinstein, A. V. Oppenheim, and M. Feder, “Signal enhancement 
using single and multi-sensor measurements,” RLE Techn. Rep. No. 
560, M.I.T., Cambridge, MA, Nov. 1990. 

[21] B. Widrow et a[., “Adaptive noise canceling: Principles and applica- 
tions,” Proc. IEEE, vol. 63, pp. 1692-1716, 1975. 

[22] C. F. J. Wu, “On the convergence properties of the EM algorithm,” 
Annals Stat., vol. 11, pp. 95-103, 1983. 

q t  + 1) = -R;;1(t)R12(t) 

h(t)l (B. 1) 

(B.12) gs(t + 1) = q [ R 2 2 ( t )  + hT(t + 1)R12(t)] 

g w ( t  + 1) = - + 2 1 1 ( t )  

ir(t + 1) =AT:(t)Alz(t) 

1 - Ys 
1 - Yw 

1 - 7 w  
(B-13) 

gl(t + 1) = q [ A 2 2 ( t )  - aT(t + l)A12(t)] (B.15) 
1 - Ya 

iJ(t + 1) = B 3 t ) B 1 2 ( t )  Ehud Weinstein (F‘94), for photograph and biography, please see p. 413 
of the October 1993 issue of the IEEE TRANSACTIONS ON SPEECH AND 

= 6( t )  + Bz1(t)[’T(t1t)Z2(t) - s T ( t l t ) w ( t l t )  AUDIO PROCESSING. 

(B.16) 

(B.17) [B22(t) - BT(t + l )Bn( t ) ] .  
1 - Y b  

@2(t) = - 
1 - 7; 
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